INFORMATION MIGRATION

Information Migration

[bookmark: _GoBack]
OSS/BSS	Page 3

INTRODUCTION
This paper describes about the key motivators of information migration and suggests the methodologies to achieve this.
Background Information: In today’s fast growing telecom industry telecom transformation is required. Telecom transformation describes the evolution of the telecom industry from a capital- intensive, technology focused model to a user-centric service delivery model means moving from legacy systems to next generation systems.
Here legacy system is an old method, technology, any hardware, or application program. There can be various reason of not replacing this legacy system till date. Like The system works satisfactorily, and the owner sees no reason for changing it or Retraining on a new system would be costly in lost time and money, compared to the anticipated appreciable benefits of replacing it (which may be zero) or The way that the system works is not well understood.
Motivators to replace the system can be as listed below
1) These systems usually run on obsolete hardware which is expensive to maintain and reduces productivity due to its low speed;
2)maintenance to software is generally expensive, tracing failures is costly and time consuming due to the lack of documentation and a general lack of understanding of the internal workings;
3) Integration efforts are greatly hampered by the absence of clean interfaces;
4) Legacy systems can hardly evolve to provide new functionality required by the organisation.

Major drivers of telecom transformation includes threats such as competitive pressures and the disruptive business models of players in other technologies affect the traditional business of the service providers. In order to sustain in the market, the service providers are introducing new attractive services to the end-users, which require modifications to their current infrastructure (legacy infrastructure) into what is typically termed as a Next-Generation infrastructure.
The process of converting or modifying the network elements, end-user services and business-processes of the service provider to achieve the competitive advantages offered by the newer technologies is known as Transformation.
When we talk about complete evolution it involves below listed sub-processes:
Telecom Network: The Network Transformation sub-process refers to the activities adding new elements in the Core Network, Backbone network and Access network. The typical activities include the following:
· Network planning and design
· Equipment/vendor selection
· Verification of equipment through lab-demos, simulations and interoperability testing
· Devising and using network configuration data transfer mechanisms & tools
· Migration planning and implementation
· Network Deployment
· Cut-over plans along with fall-back/roll-back plans

End user Services: This sub-process is aimed at ensuring that the services offered in the legacy network and availed by the end-users continue to be available during the transition phase and up to a planned future. This sub-process is also concerned with introduction of new end-user services into the next-generation network.
Typical activities include:
· Identifying mechanisms to glue legacy services to the new network
· Designing and developing network abstraction layers for implementing new service applications
· Developing proof-of-concept to validate new services in labs
· Developing and executing migration services to transition subscribers from legacy to the new network
IT Systems: This refers to the sub-process that is involved in aligning the Operations Support System and Business Support System infrastructure with the transformed network. The typical set of activities that characterize this sub-process include
· Streamlining Fulfilment, Assurance and Billing processes
· Rationalizing existing applications to merge consolidate or retire systems
· Designing and implementing end-to-end solution
Next part of the paper focuses on above discussed IT system migrations as the widespread use of technology over several decades has resulted in some large, complex systems which have evolved to a state where they significantly resist further modification and evolution.
These Legacy Information Systems are normally mission-critical: if one of these systems stops working the business may grind to a halt. Thus for many organisations, decommissioning is not an option. An alternative solution is Legacy System Migration.
2. WHAT IS MIGRATION?
	Migration is concerned with the safe, risk-free, and, above all, rapid transition of an organisation to an open platform, the preservation of the organisation's assets wherever possible, and the elimination of technical risk to the organisation by eliminating its dependence on proprietary or obsolete technologies. Migrations are rapid due to their reliance on tools to automate the process and to ensure the consistency of the resulting code. Reengineering is concerned with the improvement of the quality of the code and the code structures, so that the system can be easily adapted to fit changing business requirements, enabling the organisation to remain competitive.

Few popular approaches for the migration are discussed here.
1) Cold Turkey (approx around 1991) :
2) Chicken little migration approach (Approx around 1991)
3) Butterfly methodology (In 1996)
4) EDLM

A. Cold Turkey:
Cold Turkey involves rewriting a legacy IS from scratch to produce the target IS using modern software techniques and hardware of the target environment. This strategy carries substantial risk of failure for the following reasons.
a) A better system must be promised:
It is nearly impossible to propose a one for-one rewrite of a complex IS. Management will rarely budget the required major expenditure if the only payoff is to lower future maintenance costs. Additional business functions must be promised. This adds complexity to the replacement IS and increases the risk of failure.

b) Business conditions never stand still
The development of large, complex ISs requires years to accomplish. While the legacy IS rewrite proceeds, the original legacy IS evolves in response to maintenance and urgent business requirements, and by midnight functions (i.e., features installed by programmers in their spare time). It is a significant problem to evolve the developing replacement IS in step with the evolving legacy IS. More significant than maintenance and minor ad hoc changes are changes in the business processes that the IS is intended to support. These are typically in a constant state of flux. The prospect of incorporating support for new business processes in the replacement IS may lead to significant changes to the IS’s requirements throughout its development. This also increases the risk of failure.

c) Specifications rarely exist.
The only documentation for legacy ISs is typically the code itself. The original
Implementers have long since departed. Documentation is often non-existent, out of date, or has been lost. The original specifications and coding practices are now considered primitive or bad (e.g., self-modifying code). For example, the code is often the only documentation for the commonplace variant record encodings in which the interpretation of one data element is controlled by another data element. Often, legacy code was written for high performance on some extinct computer, resulting in arcane code constructs. In such situations, the exact function of the legacy IS must be decrypted from the code, if it is to be understood or copied in the replacement IS. This adds greatly to the complexity and cost of developing the replacement IS.

d) Undocumented dependencies frequently exist.
Invariably, applications, from non-critical (e.g., reporting programs) to mission critical, access the legacy IS for its mission critical information and other resources. Over the ten plus year life of the legacy IS, the number of these dependent ISs grows (e.g., 1,200 in a case study described below), few of which may be known to the legacy IS owners. The process of rewriting legacy ISs from scratch must identify and accommodate these dependencies. This again adds to the complexity of the rewrite and raises the risk of failure of dependent ISs.

e) Legacy ISs can be too big to cut-over.
Many legacy ISs must be operational almost 100% of the time. Many legacy databases or files require weeks to dump or download. Even if the rewritten IS were fully operational, there are no techniques to migrate the live data from the legacy IS to the new IS within the time that the business can support being without its mission critical IS. Live data must also be converted to fit the new system, again increasing project time and complexity. This may not just add complexity, it often prohibits Cold Turkey altogether.

f) Management of large projects is hard.
The difficulty of most large projects is seriously under-estimated. Hence, there is a tendency for them to grow uncontrollably in head count. Few organizations are capable of managing the development of an IS with the several hundred contributors that are common for ISs of the size and complexity we are considering. Managing more and more people inevitably brings on the famous Brooks effect [BROO75] resulting in less and less useful work.

g) Lateness is seldom tolerated.
Large projects are inevitably late due to the problems cited above. Management patience wears out quickly, especially in organizations whose basic function is not software production. This frequently results in the termination of partly or mostly completed projects.

h) Large projects tend to bloat.
There is a tendency for large projects to become bloated with nonessential groups. For example, for a project as critical as a legacy IS migration, organizations may want to explore the introduction of new management techniques and technologies). This is often done by adding additional groups to the already large project. Groups that are not critical to the migration itself increase the budget and management complexity, thus making the project more vulnerable to termination.

Thus Cold Turkey involves high risk. It has been applied and has failed many times in large Organizations. So focus was shifted to Chicken Little.

B. Chicken Little :
This technique involved migrating the legacy IS, in place, by small incremental steps until the desired long term objective is reached. Each step requires a relatively small resource allocation (e.g., a few person years), a short time, and produces a specific, small result towards the desired goal. This is in sharp contrast to the vast resource requirements of a complete rewrite (e.g., hundreds of person years), a multi-year development, and one massive result. If a Chicken Little step fails, only the failed step must be repeated rather than the entire project. Since steps are designed to be relatively inexpensive, such incremental steps do not need to promise dramatic new function to get funded.
 Each problem cited in above discussion of Cold Turkey can be addressed in an incremental fashion. In addition, failures in individual steps may indicate large or previously unforeseen problems. Due to the incremental nature of Chicken Little, such problems can be addressed incrementally.

Hence, Chicken Little seemed much safer and more feasible than Cold Turkey.	

This migration method consists of a number of migration steps that together achieve the desired migration. A step if it is responsible for specific aspects of the migration. (Example database, application, Interface)

Each legacy IS and its operational context, both business and technical, poses unique and frequently mutually inconsistent, migration requirements that, in turn, require a unique migration method.
Basic migration Architecture:

[image:]
	
This technique covered various approach for various Legacy architectures and was believed to be a quite suitable migration approach but after two years researchers from Ireland presented the results from an independent project called MILESTONE. The results of their research were presented during the 1997 Asia Pacific Software Engineering Conference and International Computer Science Conference in Hong Kong. Their research rejected the Chicken Little methodology. It’s not on the indisputable project management benefits it brings, but on technical grounds for the way it is achieved. The report states "Brodie and Stonebraker's” Chicken Little methodology offers the most mature approach. However, the need for the legacy and target systems to interoperate via gateways during the migration process adds greatly to the complexity of an already complex process and is also a considerable technical challenge. Thus a need exists for a safe, comprehensive, gateway-free approach to legacy system migration." And as a part of this Milestone project Butterfly methodology was developed.

C. Butterfly Methodology:

The Butterfly Methodology is being developed as part of the MILESTONE project, an ongoing collaborative project involving Trinity College Dublin, Broadcom Eireann Research, Telecom Eireann, and Ericsson which started in July 1996. The Butterfly Methodology is based on the assumption that the data of a legacy system is logically the most important part of the system and that, from the viewpoint of the target system development it is not the ever-changing legacy data that is crucial, but rather its semantics or schema(s). Thus, the Butterfly Methodology separates the target system development and data migration phases, thereby eliminating the need for gateways. To this end, several new concepts are introduced: Legacy Sample Data, Target Sample Data and Sample Data store; Temp store; Data-Access-Allocator; Data-Transformer; Termination-Condition and Threshold Value. Legacy Sample Data is a representative subset of the data in the legacy data store. Target Sample Data is transformed from the Legacy Sample Data. A Sample Data store stores the Target Sample Data based upon the target system data model. The
[image:]
Sample Data Store is employed to support the initial development and testing of all target system components (except for data). Figure2 illustrates the initial stage of migration using the Butterfly migration. Figure shows a scenario during the legacy data migration. Using the Butterfly Methodology, when the legacy data migration begins, the legacy data store is frozen to become a read-only store. All manipulations on the legacy data are redirected by the Data-Access-Allocator (DAA). The results of these manipulations are stored in a series of auxiliary data stores: Temp Stores (TS). The DAA effectively stores the results of manipulations in the latest Temp store and retrieves required data from the correct Temp store (or Temp Stores in case of some derived data).
A Data-Transformer, named Chrysaliser, is employed to migrate the legacy data to the target system. Chrysaliser is responsible for transforming the data from its legacy format to the data model format of the target system. This transformation will depend on the target and legacy schemas.

[image:]

Chrysaliser first transforms all data in the frozen legacy data store (TS,) to the target system. While this data is being migrated, the DAA will store results of manipulations on the legacy data to the first Temp store TS. When all data in the legacy data store has been migrated, TS is frozen to be read-only. Chrysaliser will then begin to transform TS, to the target system. The DAA will now store results of manipulations on legacy data in a new Temp store TS. When TS, has been successfully migrated, TS, will be frozen and migrated and so on.
When the size of the current Temp store is less than or equal to the Threshold Value (represented by E), the amount of time needed to migrate the data in this Temp store is sufficiently small to allow the
legacy system to be brought down without causing any serious inconvenience to the core business.
The Threshold Value will probably be determined by the administrator of the legacy system. The Termination-Condition of the Butterfly Methodology is met when Temp store TS, has been fully transformed and, at the same time, there exists a Temp store TS, such that size(TS,+,) 5 E (n 20).
Thus using the Butterfly Methodology, at no time during the migration process will the legacy system by inaccessible for a significant amount of time.

a) The salient properties of the methodology can be summarised as follows:

b) Cleary defined and strong support given to testing: It has been documented in many case studies that up to 80% of time spent on a reengineering project can be made up of testing. Each step of the Butterfly Methodology can be completely and successfully tested in practise. Target applications can be exhaustively tested against actual data held in the Sample Data store.
c) Flexible: The methodology does not refer to any particular migration tools (except for DAA and Chrysaliser). Therefore, a choice of the most applicable tools can be made from the wide range currently available and these tools may be reused in different migration projects.
d) The total duration of the data migration can be estimated: This is mainly due to the fact that the migration time of legacy data can be very clearly determined from the volume of the initial legacy data (&) in the legacy system together with the speeds of DAA and Chrysaliser. In the planning stages of any migration project this type of information is invaluable.
e) Minimum intervention between the legacy system and the target system: Only a single-way data transformation is needed for on-line operation, the rest can be done off-line.
f) Minimum interruption to legacy system: The legacy system will continue to operate as normal throughout the migration until the last Temp store has reached the pre-determined threshold value E. Consequently, the legacy system will never be inaccessible for a significant amount of time.

D. EDLM (Enterprise Data Lifecycle Management framework)
Above listed all three methods consider that whichever legacy data we have is crucial and supposed to be migrated. But in practice might be possible we have so much of unwanted data and outdated data. EDLM is a comprehensive data architecture strategy that combines business process, data processes, governance practices, and applied technologies. The result of strategy is a framework of principles and practices to manage and extend the lifecycle of data across an enterprise from creation through archiving.
Data migration project can occur anywhere in the data lifecycle. But creation and integration stages are where the data is first captured and stored, and then integrated into the organization’s information environment. Integrating the data entails moving it from temporary capture storage to a system repository, or migrating it from a source system to a new target.

There are four dimensions to EDLM and they form the framework upon which organizational demands are placed and solutions practices are devised and employed. The four dimensions are

Lifecycle: Time and Management of data as it ages.

People: Data governance, data stewards, business metrics and value and usage.

Process: Dataflow processes, business workflow processes, standard operating procedures.

Technology: Systems architecture, applications, repositories, integration layers, IT governance

Methodology Overview:
There are five phases in the methodology, and they span an entire data migration project from the initial project scoping task. Those phases are depicted in below figure.

[image:]

Stage 1: Project Preparation Phase
This stage involves researching, scoping and planning the early tasks that need to be completed in order for the design and implementation activities to commence. A number of documents are generated during this phase, notably are the project management plan, quality management plan, and resource management plan.

[image:]
Stage 2: Business Blue print phase: This stage focuses on charting the business process surrounding the target system, interviewing the system and data stake holders , and evaluating both the legacy system and target system for the items listed in below figure.

[image:]
Below figure depicts the key activities conducted during the business blue print phase.

[image:]
Stage 3: Realization Phase
In this phase data migration developers build ETL jobs as per requirements and specifications created in the Business Blue Print phase.

[image:]

Stage 4: Final Preparation Phase
The goal of this phase is to achieve business ready data for production loading into the target system.

[image:]

Stage 5: Go live or cutover phase
During this phase the TDC-tested ETL jobs are executed on the production target and the cut over process is commenced. First master data is loaded and validated, followed by transaction data. As can be seen in below figure.
[image:]

Stage 6: Post Go live support phase
In this phase training, editing of operational guide and ETL code consulting is provided. Planning towards next migration project is also discussed.

Conclusion

· Common standard of data format can resolve the issue in the long run.
· No technique is suitable for all the migration so it should be chosen by considering the nature of information, complexity and future vision of the data.
· If not done wisely one transformation would convert legacy system to another legacy system in different format.

Reference:

1. White Paper: Data Migration Management of Utopia (07/2010)
2. Gartner, “Risks and Challenges in Data Migrations and Conversions,” February 2009.
3. The Butterfly Methodology: A Gateway-free Approach for Migrating Legacy Information Systems.
4. Strategies for Data Reengineering
5. Migrating Legacy Data
6. DARWIN: On the Incremental Migration of Legacy Information Systems.
7. Legacy System Migration : A Legacy Data Migration Engine

image2.emf

image3.emf

image4.emf

image5.png
Go Live and
Support

Project
Preparation

Final
Preparation

Business
Blueprint

Realization

image6.png
Scoping
Study

Data Health
|Assessment|

Migration
Framework
Setup

High-Level
Source to Tgt
Mapping

Formulate
Data
Conversion
Approach

Formulate
Data
Cleansing

Formulate
Cut-Over
Strategy

image7.png
Data Values
Data Structures

Business Rules

Existing Data Quality Tests,
Scores, and Targets

Record and Field Validation
Logic

image8.png
Stage-Gate
to Blueprint

N ok
N Legacy Create Create Data
N Data | »f |Conversion | [+ | Definitions
Workshop List Document
Object 1
through X
For
obiect [T Create - Profile Transformation
Saurceto | | | || |LegacyData | | | | Ruesand | | | |Fiter Obsolete
) Tot e in Landing Upload Logic: Data
Ot T Mappings Area Workshop
through X 7
T Define Define Output Transfer Data
Reconcilition | > | FieorETL | fe | toStaging
Guide Load specs Area

image9.png
Stage-Gate
o
Realization
Phase

ETL Job for Object X
Cotect Data i
= | — S
Rules. /f
¥
A]] —
S| S| B =t L Rl
¥
==
==
=
=
=
>
S "
= S
\Ready for Tl / Area

N
[| cateto ||
| |Finatpres | |

Phase.

image10.png
to Final
Preparation
Phase
Execution
Run (Practice Load AGust ETL
oct [with Master Vaiidation Routines
Data)
‘Execution
Run (with Load
ez [Tested Vaiidation
Master Data)
ols Execution
(GoLive Run (with Load
|simuiation | e Tested Validation
3) Master Data)
Stage-
Gate to Go

Live Phase|

image11.png
Stage-Gate:

e
(o

cuoner | ||| waseroms ||| | ronciret ||| [ncaom || [oo At
| 1| S ot ko e = o | P o
isn

i

